Cross sections at 14 TeV and beyond

Snowmass: Seattle Energy Frontier Workshop, July 1 2013

John Campbell, Fermilab

Introduction

- Caveat: these slides mostly present results of calculations that I have performed for pp cross sections beyond 8 TeV.
 - emphasis on 14, 33 and 100 TeV.
- No deep insights, just some observations.
- Idea: test readiness of tools for investigating higher energies, look for interesting features and examine aspects of calculations that change in important ways at higher energies.
- Hope to instigate further discussion.

Overview

- Study using NLO results from MCFM and best Higgs predictions from European Strategy.
- Worth remembering double parton scattering cross section:

$$\sigma_{XY}^{\mathrm{DPS}} \sim \frac{\sigma_X \, \sigma_Y}{15 \; \mathrm{mb}}$$

$$\implies \frac{\sigma_{X(b\bar{b})}^{\text{DPS}}}{\sigma_X} = \frac{\sigma_{b\bar{b}}}{15 \text{ mb}}$$

Any cross section has approx. DPS bb contrib. of ~20% at 100 TeV (c.f. 2% at 8 TeV).

The business end

- → Zoom in on most-important (small) cross sections.
- ◆ Top cross sections (pair and single) dominate even more at higher energies.
- ◆ After gg→H and VBF, Higgs production by ttH becomes next largest cross section at 33 TeV and beyond
 - grows like top pairs.
- Higgs pairs very challenging even at 100 TeV.

$$\frac{\sigma_{HH}}{\sigma_{t\bar{t}}} \sim 10^{-4}$$
 (independent of energy)

Comments

- Existing tools could give misleading results for some cross sections out of the box
 - e.g. mundane issues with numerical stability.
- ✦ Relative size of masses becoming small - m_b^2/\hat{s} , m_W^2/\hat{s} ; possible issues with evaluating virtual corrections.
- → gg→WW a good example: amplitudes contain terms that explicitly diverge as $p_T(W) \rightarrow 0$; cuts for stability extended at 100 TeV.

Importance of gg contributions

- Contributions grow quite quickly for ZZ - very large for ostensibly NNLO effect.
- Underscores importance of computing these pieces to the next order (like a NLO calculation, since finite).
- Especially vital since more similar to Higgs production than the qqinitiated contributions.

K-factors as a function of √s

Process	μ_R^2,μ_F^2	σ_{LO} [pb]	σ_{NLO} [pb]	K-factor	σ_{LO} [pb]	σ_{NLO} [pb]	K-factor	σ_{LO} [pb]	σ_{NLO} [pb]	K-factor
$W^{+}j~(p_{T}^{W} > 100~{ m GeV})$	$M_W^2 + p_T^{W^2}$	1040	1460	1.40	427	629	1.47	211	326	1.55
$W^{-}j~(p_{T}^{W} > 100~{ m GeV})$	$M_W^2 + p_T^{W^2}$	679	984	1.45	291	443	1.52	152	238	1.57
$Z^0 j \ (p_T^W > 100 \ { m GeV})$	$M_Z^2 + p_T^{Z^2}$	681	962	1.41	312	460	1.41	164	254	1.55
$\gamma j \ (p_T^{\gamma} > 50 \ \mathrm{GeV})$	$p_T^{\gamma \; 2}$	8950	13780	1.54	2690	4030	1.47	1140	1666	1.46
$W^+ \gamma \ (p_T^{\gamma} > 50 \text{ GeV})$	$p_T^{\gamma}{}^2$	4.40	13.9	3.16	1.90	10.0	5.26	0.889	9.29	10.4
$W^-\gamma~(p_T^\gamma > 50~{ m GeV})$	$p_T^{\gamma \; 2}$	2.79	10.0	3.58	1.29	7.50	5.81	0.668	7.20	10.8
$Z^0 \gamma \ (p_T^{\gamma} > 50 \ \mathrm{GeV})$	$p_T^{\gamma \ 2}$	7.42	13.1	1.77	3.66	7.88	2.15	1.88	5.63	2.99
$\gamma\gamma$ (both $p_T^{\gamma} > 50 \text{ GeV}$)	$m_{\gamma\gamma}^2$	8.59	11.5	1.34	2.70	3.65	1.35	1.17	1.57	1.34
$\ell^+\ell^- \ (m_{\ell^+\ell^-} > 150 \ { m GeV})$	$m_{\ell^+\ell^-}^2$	7.27	8.72	1.20	20.9	23.6	1.13	73.7	77.0	1.04
cuts at 14 TeV		14 TeV			33 TeV			100 TeV		

- → Part of studies for BSM backgrounds (J. Wacker et al); cuts on basic objects double from 14 to 33 TeV, again from 33 to 100 TeV.
- Smooth dependence of K-factor on energy, no strange behaviour.
- Except for W/Z+photon cases, where K-factors grow rapidly with energy. However, NLO predictions close to cross sections found using matched Madgraph samples.

Wy in more detail

- Reasons for large corrections understood:
 - lifting of radiation zero that is present at LO only
 - enhancement by gluonic channels entering at NLO
 - dominance of new kinematic configurations that enter in the real corrections:

(produce high-p_T photon by recoil against jet)

- 1. This is fine. K-factor is known, just use as-is.
 - → problem: the bulk of the NLO prediction is coming from LO contributions and so has a correspondingly large uncertainty.

- 1. This is fine. K-factor is known, just use as-is.
 - → problem: the bulk of the NLO prediction is coming from LO contributions and so has a correspondingly large uncertainty.
- 2. In the absence of a full NNLO calculation, fix it up using an approximate treatment → LoopSim (Salam + Sapeta).

- 1. This is fine. K-factor is known, just use as-is.
 - → problem: the bulk of the NLO prediction is coming from LO contributions and so has a correspondingly large uncertainty.
- 2. In the absence of a full NNLO calculation, fix it up using an approximate treatment → LoopSim (Salam + Sapeta).
- 3. Take advantage of the recently-developed NLO+PS matched samples to recover NLO accuracy in the dominant contribution.

- 1. This is fine. K-factor is known, just use as-is.
 - → problem: the bulk of the NLO prediction is coming from LO contributions and so has a correspondingly large uncertainty.
- 2. In the absence of a full NNLO calculation, fix it up using an approximate treatment → LoopSim (Salam + Sapeta).
- 3. Take advantage of the recently-developed NLO+PS matched samples to recover NLO accuracy in the dominant contribution.
- 4. Use a less inclusive definition of the event sample; for instance, cutting on both $p_T(W)$ and $p_T(\gamma)$ greatly reduces the NLO enhancement.

- 1. This is fine. K-factor is known, just use as-is.
 - → problem: the bulk of the NLO prediction is coming from LO contributions and so has a correspondingly large uncertainty.
- 2. In the absence of a full NNLO calculation, fix it up using an approximate treatment → LoopSim (Salam + Sapeta).
- 3. Take advantage of the recently-developed NLO+PS matched samples to recover NLO accuracy in the dominant contribution.
- 4. Use a less inclusive definition of the event sample; for instance, cutting on both $p_T(W)$ and $p_T(\gamma)$ greatly reduces the NLO enhancement.

Must at least be aware of the issue in order to ensure sensible results for projections at higher energies

Higgs+jet cross sections

- 0-jet cross sections at NNLO; 1- and 2-jet at NLO.
- More jets at higher energies means vetoing jets has a more severe effect and leads to larger uncertainties.
- ◆ Presence of more jets means it is even more important to use matched samples with sufficiently high jet multiplicity.

Higgs+jets vs. √s

constant jet cut

- approx. scaling with √s
- → actually multi-jet fractions less at higher energies

Exploring QCD dynamics

- Look for differences between usual QCD tools and one based on BFKL-type small-x resummation (HEJ).
- ◆ Need a probe that looks at large rapidities: expect differences at large rapidity separation between jets in X+jet events (X=W,Z,H).

Need to repeat study at higher energies and with updated tools.

In particular, need to take advantage of modern (NLO) matched samples.

Summary of ongoing work/to-do

- ◆ Collect predictions for H+2 jet study to estimate sensitivity to BFKL logarithms.
- Assess interest in collating best possible cross-sections and uncertainties (pdf+α_s variation)
 - some of this work already done in-house (CMS, ATLAS?) and information also available elsewhere.
- → Put together other studies in pQCD that have also been performed at higher energies.

Other studies beyond 14 TeV

Cross sections at 14 TeV and beyond - John Campbell - 14

Discussion